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ABSTRACT 

 

In this work the method of finding the solution of second order linear differential equations in the Chebyshev basis 

polynomial representation is studied and presented. In order to determine the coefficients of the solution of the 

differential equation which is assumed to have an orthogonal polynomial representation, the derivatives up to 

second order of each of the basis polynomials in its orthogonal representation has to be computed. The method 

reduces the problem into solving algebraic equations that approximate the coefficients of the particular integral. 

Comparison between the numerical solutions and the exact solutions of certain equations shows that in the case 

when the source function is not a polynomial equation, the results do not converge to the expected exact solution. 

Better approximation of the source function in terms of Chebyshev basis is required for the exponential or other 

trigonometric and transcendental functions. 
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1. INTRODUCTION 

 

The study of differential equations originated in the investigation of laws that govern the physical world and 

were first solved by Sir Isaac Newton (1642-1727), who referred to them as ‘fluxional’ equations. The term ‘differential’ 

equation was introduced by Gottfried Leibniz (1646-1716) who, along with Newton, is credited with inventing the 

calculus. Many of the techniques for solving differential equations were known to mathematicians of the seventeenth 

century, but it was not until the nineteenth century that Augustin-Louis Cauchy (1789-1857) developed a general theory 

for differential equations that was independent of physical phenomena. We present here a method that can be applied to 

approximate the solution of second order linear differential equations of the form  

 
2

2
( ) ( ) ( ) ( )

d y dy
a x b x c x y g x

dx dx
                        (1) 

 

such that the integral is in the form of the Chebyshev polynomial basis. The source function ( )g x  is therefore 

approximated using the Chebyshev polynomials. 

   

2. APPROXIMATING TO SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS. 

 
In 1992, J.C Butcher investigated the role of orthogonal polynomials in numerical ordinary differential 

equations [1]. Moreover, the study of finite difference approximation to ordinary differential equation has been done by 

M.R. Osborne in 1964. According to him, the method is given for the construction of finite difference approximations to 

ordinary linear differential equations, based on the assumption that the desired solution can be adequately represented by 

a certain interpolation polynomial [2].  Later in 2008, Lara et.al had investigated on the approximation to solutions of 

linear ordinary differential equations by cubic interpolation. They presented a method of integration for non-autonomous 

non-homogeneous systems of linear ordinary differential equations (ODES), which is based in both, the cubic 

polynomial segmentary interpolation and the minimal square method [3].  Recently, in 2013, Amber Sumner Robertson 

has investigated on the Chebyshev polynomial approximation to solution of ODES. He developed a method for finding 

approximate particular solutions for second order ordinary differential equation [4].  

 

3. PRELIMINARY CONCEPTS 

 

In order to approximate the solution of second order linear differential equations using the Chebyshev 

polynomials, the Chebyshev polynomials of the first kind is first presented. Refering to [5], The Chebyshev polynomials 

)(xTn of the first kind is a polynomial in x of degree n, defined by the relation 

nxTn cos)(  when .cosx  
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3.1  Generating Chebyshev Polynomials 

 

According to De Moivre’s Theorem, ncos  is a polynomial of degree n in .cos  
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Hence, the first few Chebyshev polynomial basis are given by 
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By combining the trigonometric identity 

 

.)1cos(cos2)2cos(cos   nnn  

 

Hence,the fundamental recurrence relation for Chebyshev polynomials  

 

)()(2)( 21 xTxxTxT nnn   ,...,3,2n
 

 

with the initial condition 1)(0 xT , 1)(1 xT . The plot of Chebyshev polynomials for 5,4,3,2,1,0n  can be seen in 

Figure 1 below. 

.  

Figure 1 Plot of Chebyshev Polynomials 

 

 

3.2  APPROXIMATION OF FUNCTIONS USING CHEBYSHEV POLYNOMIALS 

 

There are many related works that requires computations in the orthogonal polynomial basis since the method 

of transformation from the orthogonal basis polynomials is sometimes ill-conditioned. In this work, we investigate on the 

application of orthogonal polynomials to approximate the source function and solution of second order ordinary 

differential equations (ODES). Firstly, the source function )(xg of equation (1) needs to be approximated using 
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Chebyshev polynomials. As we know, )(xTn  denotes the Chebyshev polynomial of degree n  where it has n  roots 

which also known as Chebyshev nodes [6]. Then, these nodes can be calculated by the formula 
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A function )(xg  can be approximated by an n-th degree polynomial )(xPn  expressed in terms of nTT ,...,0 , 

,
2

1
)(...)()()()( 01100 CxTCxTCxTCxPxf nnn   
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Figure 2 give the functions used in the approximation of the Chebyshev basis polynomials using MATLAB.  

 

 
%function approximate  
n=3; 
for i=1:n+1   
x(i)=cos(((i-(1/2))/n)*pi); 
end 
for k=1:n+1 
f(k)=%any function;  
end 
for j=1:n+1 
for k=1:n+1 
        T(j,k)=cos(((j-1)*(k-(1/2))/(n+1))*pi); 
end 
end 
for j=1:n+1 
sumA=0;  
for k=1:n+1 
sumA=sumA+(f(k)*T(j,k)); 
    C(j)=sumA*(2/n); 

 
end 
End 

 

Figure 2: Function Approximation using Matlab Software 
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4. MATHEMATICAL FORMULATION 

 

We apply the method for solving nonhomogeneous linear equations. As in the work of [4], we assume the 

particular integral to be in the form 

    ).(

0

xTqy j

m

j

jp 


         (2) 

The coefficients jq  in equation (2) need to be determined. Since we have approximate the source function 

)()( xPxg n . Let m=n if 0c  in equation (2) ; 1 nm  if 0,0  bc ; 2 nm  if 0,0  bc . By using method 

of reduction order, the derivatives of particular integral is determined: 

 

    

),()( '
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' xTqxy
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

          (3)

    

)()( ''

0

'' xTqxy j

m

j

jp 


                        (4) 

 

Substituting equation (2), (3) and (4) into equation (1) gives the equation 
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      (5) 

 

To form a linear combination of equations of the form (5), )('' xT  and )(' xT need to be determined in terms of 

Chebyshev polynomials basis.  From the definition of Chebyshev polynomials, the monomial 
nx  can also be represented 

in the Chebyshev basis [5] as follows 
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 Unlike the approach in [4], the power of x  relative to the Chebyshev basis is 

computed and substituted into the Chebyshev derivative series. Thus, the first derivatives of Chebyshev polynomials in 

terms of )(xTn are given as: 

0)('0 xT  

1)('1 xT  

)(4)( 1
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)(3)(6)( 02
'
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The list of second derivatives in terms of )(xTn  

0)(''0 xT  

0)(''1 xT  

0
''

2 4)( TxT   

)(24)( 1
''

3 xTxT   

… 

 

The coefficients of jq  in equation (5) can then be easily determined by comparing the equations and solve by 

using backward substitution. This leads to the approximation of the integral and the complimentary function cy . The 

examples given in Section 5 below demonstrate the method employed. Comparison between the numerical solutions and 

exact solution are made when the initial value problem is applied on each problem.  

 

5. EXAMPLES OF APPROXIMATION 

 

Example 1 Consider the equation 

 
2

2

2
2 2 1.

d y dy
y x

dx dx
     

 

with initial condition 1)0( y  and  2)0(' y
.
Firstly, the right-hand side function of the differential equation needs to 

be approximated. The Chebyshev polynomial representation for )(xg is )()(

2

0

xTpxg j

j

j


 . By expanding the 

equation, 

221100)( TpTpTpxg   

 

Substitute the first three Chebyshev polynomials into this equation gives   

 

)12()()1()( 2
210  xpxppxg

 ,2)( 2
2

1
1

0
20 xpxpxpp       (6) 

 

by comparing the source function with equation (6) gives the coefficients 
jp
.
 Hence the coefficients of 

jp for 2,1,0j

are 00 p , 01 p , 12 p . Therefore, the Chebyshev approximation of function 12)( 2  xxg . 

 

.)()( 22 TxPxg 
       (7) 

 

Then, we look for particular solution  
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By reduction of the particular solution, we obtain py' and py '' . To get the coefficients jq , substitute )(' xT j  and )('' xT  

in terms of )(xT  into py' and py ''
.
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Substitute the above equation into the original equation gives, 

 
'' '

0 1 3 0 0 3 2 1 1 3 2 2 3
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By comparing equation (7) with equation (8), we obtain 

 

0

16

0824

0624

3

23

123

0312









q

qq

qqq

qqqq

 

 

This yields, 120 q , 81 q , 12 q , 03 q . Therefore, the Chebyshev approximation particular solution is 

)()(8)(12 210 xTxTxTy p  . Next, the complimentary function is solved and the initial value problem is inserted into 

this problem to obtain the constants in the function. The numerical solution is approximated as 

 

)()(8)(12)104()(~
210 xTxTxTexxy x  . 

 

The exact solution of the problem is 

 
2( ) (4 10) 2 8 11.xy x x e x x    

 
 

After substituting the initial values, the constant values in the complimentary function of the corresponding 

homogeneous part tend to be close to the exact solution. 

 

Example 2 Consider the equation 

,62
2

2
xey

dx

dy

dx

yd
  

 

with initial condition 1)0( y  and 2)0(' y . The source function is approximated using the Maclaurin series as  

 

...
12020

3666
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xx
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Solving the equation using the method described in Example 1 gives the approximation of the particular integral 

 

0 1 2 3

93 99 1
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and the complimentary function is computed as 
87 43

( )
2 2

x

c
y x e   . The numerical solution is therefore approximated 

as p
x yexy  )

2

43

2

87
(~ . On the other hand the exact solution is given by xexxy )23( 2  .   

 

 

6. CONCLUSION 

 

The source function in the first example is a polynomial function while the second example is the exponential 

function. In the second example it appears that the numerical solution of this problem physically does not equal to the 

exact solution. Two stages of approximation are involved in this case. Firstly, to approximate the exponential function of 

power series polynomials and then this followed by finding its approximation in terms of the Chebyshev basis 

polynomials. For this case the method applied in this work seems to be far from accurate, as compared to the case when 

the source function is a power series polynomial. Better approximation of the source function in terms of Chebyshev 

basis is required for the exponential or other trigonometric and transcendental functions. 
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