Preparation of Gold/Silver Core-Shell Nanoparticles for Colorimetric Sensing and as Photocatalyst in the Degradation of Organic Dye
Abstract
Keywords
Full Text:
PDFReferences
Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences. 2(4) (2010) 282.
Katz, E., Baron, R., & Willner, I. Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: Control of diffusional and surface-confined electrochemical processes. Journal of the American Chemical Society. 127(11) (2005) 4060-4070.
Khan, I., Saeed, K., & Khan, I., Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, (2017) 1-24.
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N.. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews. 108(6) (2018) 2064-2110.
Linic, S., Christopher, P., & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials, 10(12) (2011) 911.
Huang, H., Huang, S., Yuan, S., Qu, C., Chen, Y., Xu, Z., Liao, B., Zeng, Y., & Chu, P. K. High-sensitivity biosensors fabricated by tailoring the localized surface plasmon resonance property of core–shell gold nanorods. Analytica chimica acta. 683(2) (2011) 242-247.
Stuchinskaya, T., Moreno, M., Cook, M. J., Edwards, D. R., & Russell, D. A. Targeted photodynamic therapy of breast cancer cells using antibody–phthalocyanine–gold nanoparticle conjugates. Photochemical & Photobiological Sciences. 10(5) (2011) 822-83
Singh, P., Thuy, N. T., Aoki, Y., Mott, D., & Maenosono, S. Intensification of surface enhanced Raman scattering of thiol-containing molecules using Ag@ Au core@ shell nanoparticles. Journal of Applied Physics. 109(9) (2011) 094301
Steinbrück, A., Stranik, O., Csaki, A., & Fritzsche, W. Sensoric potential of gold–silver core–shell nanoparticles. Analytical and bioanalytical chemistry. 401(4) (2011) 1241.
Ji, Y., Yang, S., Guo, S., Song, X., Ding, B., & Yang, Z. Bimetallic Ag/Au nanoparticles: A low temperature ripening strategy in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 372(1-3) (2010) 204-209.
Haldar, K. K., Kundu, S., & Patra, A. Core-size-dependent catalytic properties of bimetallic Au/Ag core–shell nanoparticles. ACS applied materials & interfaces. 6(24) (2014) 21946-21953.
Calagua, A., Alarcon, H., Paraguay, F., & Rodriguez, J. Synthesis and characterization of bimetallic gold-silver core-shell nanoparticles: a green approach. Advances in Nanoparticles. 4(04) (2015) 116.
Zeng, J., Cao, Y., Lu, C.-H., Wang, X.-d., Wang, Q., Wen, C.-y., Qu, J.-B., Yuan, C., Yan, Z.-f., & Chen, X. A colorimetric assay for measuring iodide using Au@ Ag core–shell nanoparticles coupled with Cu2+. Analytica chimica acta. 891 (2015) 269-276.
Nandini, R., & Vishalakshi, B. A study of interaction of methyl orange with some polycations. Journal of Chemistry, 9(1) (2012) 1-14
Fu, C., Li, M., Li, H., Li, C., guo Wu, X., & Yang, B. Fabrication of Au nanoparticle/TiO2 hybrid films for photoelectrocatalytic degradation of methyl orange. Journal of alloys and compounds. 692 (2017) 727-733.
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 eProceedings Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © 2016 Department of Chemistry, Universiti Teknologi Malaysia.
Disclaimer : This website has been updated to the best of our knowledge to be accurate. However, Universiti Teknologi Malaysia shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.
Best viewed: Mozilla Firefox 4.0 & Google Chrome at 1024 × 768 resolution.